题目内容

已知定义在R上的函数f(x)满足下列三个条件:
①对任意的x∈R,都有f(x+4)=f(x);
②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的图象关于y轴对称,
则下列结论中,正确的是(  )
A、f(7)<f(4.5)<f(6.5)
B、f(7)<f(6.5)<f(4.5)
C、f(4.5)<f(6.5)<f(7)
D、f(4.5)<f(7)<f(6.5)
考点:抽象函数及其应用
专题:函数的性质及应用
分析:先把函数的性质研究清楚,由三个条件知函数周期为4,其对称轴方程为x=2,在区间[0,2]上是增函数,观察四个选项发现自变量都不在已知的单调区间内故应用相关的性质将其值用区间[0,2]上的函数值表示出,以方便利用单调性比较大小.
解答: 解:由①f(x+4)=f(x)知函数的周期是4;
由②知函数在区间[0,2]上是增函数,
由③y=f(x+2)的图象关于y轴对称,知函数的对称轴为x=2;
∴f(7)=f(3)=f(2+1)=f(2-1)=f(1),
f(4.5)=f(0.5),
f(6.5)=f(2.5)=f(2+0.5)=f(2-0.5)=f(1.5)
∵0<0.5<1<1.5<2,函数y=f(x)在区间[0,2]上是增函数
∴f(0.5)<f(1)<f(1.5),即f(4.5)<f(7)<f(6.5)
故选:D.
点评:本题考点是函数单调性的应用,综合考查了函数的周期性,函数的对称性以及函数图象的平移规律,涉及到了函数的三个主要性质,同时考查了转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网