ÌâÄ¿ÄÚÈÝ
| 2¦Ð |
| 3 |
| 3 |
£¨1£©Ç󦨵ÄÖµºÍ¡ÏDOEµÄ´óС£»
£¨2£©ÈôÒªÔÚÔ²»¡ÈüµÀËù¶ÔÓ¦µÄÉÈÐÎODEÇøÓòÄÚ½¨Ò»¸ö¡°¾ØÐÎ²ÝÆº¡±£¬¾ØÐεÄÒ»±ßÔÚµÀ·EFÉÏ£¬Ò»¸ö¶¥µãÔÚ°ë¾¶ODÉÏ£¬ÁíÍâÒ»¸ö¶¥µãPÔÚÔ²»¡DEÉÏ£¬Çó¡°¾ØÐÎ²ÝÆº¡±Ãæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱPµãµÄλÖã®
¿¼µã£ºÁ½½ÇºÍÓë²îµÄÕýÏÒº¯Êý,ÉÈÐÎÃæ»ý¹«Ê½
רÌ⣺Èý½Çº¯ÊýµÄÇóÖµ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨1£©Ê×Ïȸù¾Ýº¯ÊýµÄͼÏóÇó³öº¯ÊýµÄ½âÎöʽ£¬½øÒ»²½Çó³ö½á¹û£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬¶ÔÎÊÌâ½øÐÐʵ¼ÊÓ¦Óã®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬¶ÔÎÊÌâ½øÐÐʵ¼ÊÓ¦Óã®
½â´ð£º
½â£º£¨1£©ÓÉÌõ¼þ£¬µÃA=2£¬
=3£®
¡ßT=
£¬
¡à¦Ø=
£®
¡àÇúÏß¶ÎFBCµÄ½âÎöʽΪ£ºy=2sin(
x+
)£®
¡àµ±x=0ʱ£¬y=OC=
£®
ÓÖCD=
£¬
¡à¡ÏCOD=
£¬¼´¡ÏDOE=
£®
£¨2£©ÓÉ£¨1£©ÖªOD=
£®
µ±¡°¾ØÐÎ²ÝÆº¡±µÄÃæ»ý×î´óʱ£¬
µãP ÔÚ»¡DEÉÏ£¬
¹ÊOP=
£®
Éè¡ÏPOE=¦È£¬0£¼¦È¡Ü
£¬
¡°¾ØÐÎ²ÝÆº¡±µÄÃæ»ýΪ£º
S=
sin¦È(
cos¦È-
sin¦È)=6(sin¦Ècos¦È-sin2¦È)
=6(
sin2¦È+
cos2¦È-
)=3
sin(2¦È+
)-3£®
¡ß0£¼¦È¡Ü
£¬
¹Êµ±2¦È+
=
ʱ£¬
¦È=
ʱ£¬
SÈ¡µÃ×î´óÖµ3
-3£®
| T |
| 4 |
¡ßT=
| 2¦Ð |
| ¦Ø |
¡à¦Ø=
| ¦Ð |
| 6 |
¡àÇúÏß¶ÎFBCµÄ½âÎöʽΪ£ºy=2sin(
| ¦Ð |
| 6 |
| 2¦Ð |
| 3 |
¡àµ±x=0ʱ£¬y=OC=
| 3 |
ÓÖCD=
| 3 |
¡à¡ÏCOD=
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
£¨2£©ÓÉ£¨1£©ÖªOD=
| 6 |
µ±¡°¾ØÐÎ²ÝÆº¡±µÄÃæ»ý×î´óʱ£¬
µãP ÔÚ»¡DEÉÏ£¬
¹ÊOP=
| 6 |
Éè¡ÏPOE=¦È£¬0£¼¦È¡Ü
| ¦Ð |
| 4 |
¡°¾ØÐÎ²ÝÆº¡±µÄÃæ»ýΪ£º
S=
| 6 |
| 6 |
| 6 |
=6(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| ¦Ð |
| 4 |
¡ß0£¼¦È¡Ü
| ¦Ð |
| 4 |
¹Êµ±2¦È+
| ¦Ð |
| 4 |
| ¦Ð |
| 2 |
¦È=
| ¦Ð |
| 8 |
SÈ¡µÃ×î´óÖµ3
| 2 |
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶҪµã£ºÕýÏÒÐͺ¯ÊýµÄ½âÎöʽ£¬º¯Êý½âÎöʽµÄʵ¼ÊÓ¦Óã¬ÊôÓÚ»ù´¡ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôa=log0.20.3£¬b=log0.30.2£¬c=log0.30.1£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
| A¡¢a£¾b£¾c |
| B¡¢b£¾a£¾c |
| C¡¢c£¾a£¾b |
| D¡¢c£¾b£¾a |
| a |
| b |
| a |
| b |
| A¡¢2 | B¡¢1 | C¡¢0 | D¡¢-2 |
Éèa£¬b£¬c·Ö±ðÊǺ¯Êýf(x)=2x-log
x£¬g(x)=(
)x-log2x£¬h(x)=(
)x-log
xµÄÁãµã£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| A¡¢a£¼c£¼b |
| B¡¢a£¼b£¼c |
| C¡¢b£¼a£¼c |
| D¡¢c£¼b£¼a |
ÒÑÖªº¯Êýf£¨x£©=
£¬£¨a£¾0£¬ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬Èô¹ØÓÚxµÄ·½³Ìf£¨f£¨x£©£©=0£¬ÓÐÇÒÖ»ÓÐÒ»¸öʵÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
|
| A¡¢£¨1£¬+¡Þ£© |
| B¡¢£¨1£¬2£© |
| C¡¢£¨0£¬1£© |
| D¡¢£¨0£¬1£©¡È£¨1£¬+¡Þ£© |