题目内容
设{an}是等差数列,{bn}是各项都为正数的等比数列,且满足:a1=b1=1,同时有a3+b2=5,a2+b3=6
(1)求{an},{bn}的通项公式;
(2)求数列{
}的前n项和Sn.
(1)求{an},{bn}的通项公式;
(2)求数列{
| an |
| bn |
考点:数列的求和,等差数列的通项公式,等比数列的通项公式
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差是d,正数的等比数列{bn}的公比是q>0,依题意,列出关于二者的方程组,解之即可求得{an},{bn}的通项公式;
(2)由(1)得
=
,Sn=
+
+…+
=1+
+
+…+
,利用错位相减法求和即可求得Sn.
(2)由(1)得
| an |
| bn |
| n |
| 2n-1 |
| a1 |
| b1 |
| a2 |
| b2 |
| an |
| bn |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
解答:
解:(1)设等差数列{an}的公差是d,正数的等比数列{bn}的公比是q>0,则
,
解得d=1,q=2;
所以,an=a1+(n-1)d=1+n-1=n,bn=b1•2n-1=2n-1;
(2)由(1)得
=
,
所以,Sn=
+
+…+
=1+
+
+…+
,①
Sn=
+
+…+
+
,②
①-②得:
Sn=1+
+
+…+
-
=
-
=2-
,
所以Sn=4-
.
|
解得d=1,q=2;
所以,an=a1+(n-1)d=1+n-1=n,bn=b1•2n-1=2n-1;
(2)由(1)得
| an |
| bn |
| n |
| 2n-1 |
所以,Sn=
| a1 |
| b1 |
| a2 |
| b2 |
| an |
| bn |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| n-1 |
| 2n-1 |
| n |
| 2n |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
=
1-(
| ||
1-
|
| n |
| 2n |
| n+2 |
| 2n |
所以Sn=4-
| n+2 |
| 2n-1 |
点评:本题考查数列求和,着重考查等差数列与等比数列的通项公式的应用,突出错位相减法求和的考查,属于中档题.
练习册系列答案
相关题目