题目内容

17.已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\frac{\sqrt{6}+\sqrt{2}}{2}$

分析 利用直线F2A与抛物线相切,求出A的坐标,利用双曲线的定义,即可求得双曲线的离心率.

解答 解:设直线F2A的方程为y=kx-1,代入x2=4y,可得x2=4(kx-1),
即x2-4kx+4=0,
∴△=16k2-16=0,∴k=±1,
∴A(2,1),
∴双曲线的实轴长为AF2-AF1=2($\sqrt{2}$-1),
∴双曲线的离心率为$\frac{2}{2(\sqrt{2}-1)}$=$\sqrt{2}$+1.
故选:C.

点评 本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是求出A的坐标,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网