题目内容
已知等比数列{an}的项a3,a5是方程2x2+11x+10=0的两个根,则a12+a72= .
考点:等比数列的性质
专题:等差数列与等比数列
分析:由已知条件得到a3a5=
=5,a3+a5=-
,设a1=
,a3=
,a5=a4q,a7=a4q 3,推导出q2+
=
-2=
,由此能求出a12+a72的值.
| 10 |
| 2 |
| 11 |
| 2 |
| a4 |
| q3 |
| a4 |
| q |
| 1 |
| q2 |
| 121 |
| 20 |
| 81 |
| 20 |
解答:
解:∵等比数列{an}的项a3,a5是方程2x2+11x+10=0的两个根,
∴a3a5=
=5,a3+a5=-
,
∵a1=
,a3=
,a5=a4q,a7=a4q 3,
a42=5,
+a4q=a4(q+
)=-
,
∴q+
=-
,∴(q+
)2=q2+
+2=
,
∴q2+
=
-2=
,
∴a12+a72=(
)2+(a4q3)2
=a42[(
)3+(q2)3]
=5(
+q2)(q4+
-1)
=5×
•[(q2+
)2-3]
=
[(
)2-3]
=
.
故答案为:
.
∴a3a5=
| 10 |
| 2 |
| 11 |
| 2 |
∵a1=
| a4 |
| q3 |
| a4 |
| q |
a42=5,
| a4 |
| q |
| 1 |
| q |
| 11 |
| 2 |
∴q+
| 1 |
| q |
| 11 |
| 2a4 |
| 1 |
| q |
| 1 |
| q2 |
| 121 |
| 120 |
∴q2+
| 1 |
| q2 |
| 121 |
| 20 |
| 81 |
| 20 |
∴a12+a72=(
| a4 |
| q3 |
=a42[(
| 1 |
| q2 |
=5(
| 1 |
| q2 |
| 1 |
| q4 |
=5×
| 81 |
| 20 |
| 1 |
| q2 |
=
| 81 |
| 4 |
| 81 |
| 2 |
=
| 434241 |
| 1600 |
故答案为:
| 434241 |
| 1600 |
点评:本题考查等比数列的性质的应用,是中档题,解题时要认真审题,注意韦达定理的合理运用.
练习册系列答案
相关题目