题目内容
计算:
[sin
+sin
+…+sin
].
| lim |
| n→∞ |
| 1 |
| n |
| π |
| n |
| 2π |
| n |
| (n-1)π |
| n |
考点:极限及其运算
专题:计算题
分析:由题设条件推导出原式=
sinxdx,由此能求出结果.
| 1 |
| π |
| ∫ | π 0 |
解答:
解:
[sin
+sin
+…+sin
]
=
sin
•
=
sinxdx
=
(-cosx)
=
•[(-cosπ)-(-cos0)]
=
.
| lim |
| n→∞ |
| 1 |
| n |
| π |
| n |
| 2π |
| n |
| (n-1)π |
| n |
=
| lim |
| n→∞ |
| 1 |
| π |
| n-1 |
| i=0 |
| iπ |
| n |
| π |
| n |
=
| 1 |
| π |
| ∫ | π 0 |
=
| 1 |
| π |
| | | π 0 |
=
| 1 |
| π |
=
| 2 |
| π |
点评:本题考查极限的运算,是基础题,解题时要认真审题,注意定积分的合理运用.
练习册系列答案
相关题目