题目内容

若P是抛物线x2=4y上的一个动点,则点P到直线l1:y=-1,l2:3x+4y+12=0的距离之和的最小值为(  )
A、3
B、4
C、
16
5
D、
19
5
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.
解答: 解:设抛物线上的一点P的坐标为(2a,a2),则P到直线l1:y=-1的距离d1=a2+1;
P到直线l2:3x+4y+12=0的距离d2=
6a+4a2+12
5

则d1+d2=
6a+4a2+12
5
+a2+1=
9a2+6a+17
5

当a=-
1
3
时,P到直线l1和直线l2的距离之和的最小值为
16
5

故选:C.
点评:此题考查学生灵活运用抛物线的简单性质解决实际问题,灵活运用点到直线的距离公式化简求值,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网