题目内容
数列{an}的前n项和为Sn,an是Sn和1的等差中项,等差数列{bn}满足b1+S4=0,b9=a1.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=
,Wn是数列{cn}的前n项和,求Wn及取值范围.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=
| 1 |
| (bn+16)(bn+18) |
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:(1)由等差数列的性质和通项与前n项和的关系,即可得到数列{an}的通项,再由等差数列的通项,即可得到数列{bn}的通项公式;
(2)求出cn=
=
(
-
),再由裂项相消求和得到Wn,再由数列的单调性,即可得到范围.
(2)求出cn=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:(1)由于an是Sn和1的等差中项,则2an=1+Sn,①
当n=1时,2a1=1+S1=1+a1,解得,a1=1,
又n>1时,2an-1=1+Sn-1,②
①-②,得,2an-2an-1=an,即有an=2an-1,
则an=2n-1.Sn=2n-1.
设等差数列{bn}的公差为d,则由b1+S4=0,得到b1+15=0,即b1=-15,
又b9=a1=1,则-15+8d=1,则d=2,
则bn=-15+2(n-1)=2n-17;
(2)cn=
=
=
(
-
)
Wn=c1+c2+…+cn=
(1-
+
-
+…+
-
)
=
(1-
)=
,
且Wn<
,Wn为递增数列,则当n=1时,取最小值,且为
,
则Wn=
,其取值范围是[
,
).
当n=1时,2a1=1+S1=1+a1,解得,a1=1,
又n>1时,2an-1=1+Sn-1,②
①-②,得,2an-2an-1=an,即有an=2an-1,
则an=2n-1.Sn=2n-1.
设等差数列{bn}的公差为d,则由b1+S4=0,得到b1+15=0,即b1=-15,
又b9=a1=1,则-15+8d=1,则d=2,
则bn=-15+2(n-1)=2n-17;
(2)cn=
| 1 |
| (bn+16)(bn+18) |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
Wn=c1+c2+…+cn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
且Wn<
| 1 |
| 2 |
| 1 |
| 3 |
则Wn=
| n |
| 2n+1 |
| 1 |
| 3 |
| 1 |
| 2 |
点评:本题考查等差数列和等比数列的通项和求和公式及运用,考查数列的求和方法:裂项相消法,考查运算能力,属于中档题.
练习册系列答案
相关题目