题目内容

如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体体积的最小值等于(  )
A、36
B、
63
2
C、18
D、
45
4
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图知:几何体体积的最小时,几何体是四棱锥与正方体的组合体,且正方体的棱长为3,四棱锥的底面为正方形,边长为3,高为3,即可求出几何体体积的最小值.
解答: 解:由三视图知:几何体体积的最小时,几何体是四棱锥与正方体的组合体,且正方体的棱长为3,四棱锥的底面为正方形,边长为3,高为3
∴几何体的体积的最小值V=3×3+
1
3
×3×3×3
=18.
故选:C.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网