题目内容

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导函数y=f′(x) 的导数,若f″(x)=0 有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=x3-3x2+2x-2,请解答下列问题:
(1)求函数f(x)的“拐点”A的坐标;
(2)求证f(x)的图象关于“拐点”A对称.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)根据“拐点”的定义求出f''(x)=0的根,然后代入函数解析式可求出“拐点”A的坐标.
(2)设出点的坐标,根据中心对称的定义即可证明.
解答: 解:(1)∵f'(x)=3x2-6x+2,
∴f''(x)=6x-6,
令f''(x)=6x-6=0,
得x=1,f(1)=-2 
所以“拐点”A的坐标为(1,-2)
(2)设P(x0,y0)是y=f(x)图象上任意一点,则y0=x03-3x02+2x0-2 
∴P(x0,y0)关于(1,-2)的对称点P'(2-x0,-4-y0),
把P'(2-x0,-4-y0)代入y=f(x),得左边=-4-y0=-x03+3x02-2x0-2 
右边=(2-x0)3-3(2-x0)2+2(2-x0)-2=-x03+3x02-2x0-2 
∴左边=右边,
∴P'(2-x0,-4-y0)在y=f(x)图象上,
∴f(x)的图象关于“拐点”A对称.
点评:本题考查一阶导数、二阶导数的求法,函数的拐点的定义以及函数图象关于某点对称的条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网