题目内容
已知函数f(x)的定义域为R,对任意实数m、n,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1
(1)求证:f(x)在定义域R上是单调递增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2.
(1)求证:f(x)在定义域R上是单调递增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2.
考点:抽象函数及其应用,函数单调性的判断与证明,函数单调性的性质
专题:综合题,函数的性质及应用
分析:(1)定义法:设x1,x2∈R,且x1<x2,则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1),由已知可判断其符号;
(2)令m=n=1可求得f(2),进而可得f(1)=2,利用单调性可去掉不等式中的符号“f”,转化为具体不等式.
(2)令m=n=1可求得f(2),进而可得f(1)=2,利用单调性可去掉不等式中的符号“f”,转化为具体不等式.
解答:
(1)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,
∴f(x2-x1)>1,
又f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)>0,即f(x2)>f(x1),
∴f(x)是R上的增函数.
(2)解:∵m,n∈R,不妨设m=n=1,
∴f(1+1)=f(1)+f(1)-1,即f(2)=2f(1)-1,
f(3)=f(2+1)=f(2)+f(1)-1=2f(1)-1+f(1)-1=3f(1)-2=4,
∴f(1)=2,
∴f(a2+a-5)<2=f(1),
∵f(x)在R上为增函数,∴a2+a-5<1,解得-3<a<2,
∴a∈(-3,2).
∴f(x2-x1)>1,
又f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)>0,即f(x2)>f(x1),
∴f(x)是R上的增函数.
(2)解:∵m,n∈R,不妨设m=n=1,
∴f(1+1)=f(1)+f(1)-1,即f(2)=2f(1)-1,
f(3)=f(2+1)=f(2)+f(1)-1=2f(1)-1+f(1)-1=3f(1)-2=4,
∴f(1)=2,
∴f(a2+a-5)<2=f(1),
∵f(x)在R上为增函数,∴a2+a-5<1,解得-3<a<2,
∴a∈(-3,2).
点评:本题考查抽象函数单调性的判断、抽象不等式的求解,考查转化思想,抽象函数的单调性常用定义解决,抽象不等式的求解往往转化为具体不等式处理.
练习册系列答案
相关题目
某人年初向银行贷款a元用于购房,银行贷款的年利率为r,按复利计算(即本年的利息计入次年的本金),若这笔贷款要分10年等额还清,每年年初还一次,并且从借款后次年年初开始归还,则每年应还( )元.
A、
| ||
B、
| ||
C、
| ||
D、
|
设全集U={1,2,3,4,5},集合S={1,2,3,4},则∁US=( )
| A、{5} |
| B、{1,2,5} |
| C、{2,3,4} |
| D、{1,2,3,4} |
若函数f(x)在区间(a,b)上是增函数,在区间(b,c)上也是增函数,则函数f(x)在区间(a,b)∪(b,c)上( )
| A、必是增函数 |
| B、必是减函数 |
| C、是增函数或减函数 |
| D、无法确定单调性 |