题目内容

已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1.直径为4的球的体积为V2,则V1:V2=(  )
A、1:4B、1:2
C、1:1D、2:1
考点:由三视图求面积、体积
专题:计算题
分析:由三视图判断几何体为一个圆柱挖去一个圆锥,且圆柱与圆锥的底面圆直径为4,高为2,代入体积公式求出V1,V2,再计算
V1
V2
解答: 解:由三视图判断几何体为一个圆柱挖去一个圆锥,且圆柱与圆锥的底面圆直径为4,高为2,
∴V1=π×22×2-
1
3
π×22×2=
16
3
π,
V2=
4
3
×π×23=
32
3
π;
V1
V2
=
1
2

故选B.
点评:本题考查了由三视图求几何体的体积,考查了球的体积公式与圆锥、圆柱的体积公式,关键是由三视图判断几何体的形状.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网