题目内容

已知圆C1:(x+2)2+(y-2)2=2,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(  )
A、(x+3)2+(y-3)2=2
B、(x-1)2+(y+1)2=2
C、(x-2)2+(y+2)2=2
D、(x-3)2+(y+3)2=2
考点:直线与圆的位置关系
专题:直线与圆
分析:在圆C2上任取一点(x,y),则此点关于直线x-y-1=0的对称点(y+1,x-1)在圆C1:(x+2)2+(y-2)2=2上,代入化简可得到圆C2的方程.
解答: 解:在圆C2上任取一点(x,y),则此点关于直线x-y-1=0的对称点(y+1,x-1)在圆C1:(x+2)2+(y-2)2=2上,
∴有(y+1+2)2+(x-1-2)2=2,
即(x-3)2+(y+3)2=2,
∴圆C2的方程为(x-3)2+(y+3)2=2.
故选D.
点评:本题考查点关于直线对称的圆的方程的求法,考查计算能力,注意对称点的坐标的求法是本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网