题目内容

如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=(  )
A、2
B、1
C、
1
2
D、0
考点:利用导数研究曲线上某点切线方程
专题:圆锥曲线的定义、性质与方程
分析:根据导数的几何意义知,函数y=f(x)的图象在点P处的切线的斜率就是函数y=f(x)在该点的导数值,因此可求得f′(5).
解答: 解:根据图象知,函数y=f(x)的图象与在点P处的切线交于点P,
f(5)=-5+8=3,
f′(5)为函数y=f(x)的图象在点P处的切线的斜率,
∴f′(5)=-1;
∴f(5)+f′(5)=2.
故选:A.
点评:本题是基础题.考查导数的几何意义以及学生识图能力的考查,命题形式新颖,值得收藏.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网