ÌâÄ¿ÄÚÈÝ
ijÖÖ²¨µÄ´«²¥ÊÇÓÉÇúÏßf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£©À´ÊµÏֵģ¬ÎÒÃǰѺ¯Êý½âÎöʽf£¨x£©=Asin£¨¦Øx+¦Õ£©³ÆÎª¡°²¨¡±£¬°ÑÕñ·ù¶¼ÊÇA µÄ²¨³ÆÎª¡°AÀನ¡±£¬°ÑÁ½¸ö½âÎöʽÏà¼Ó³ÆÎª²¨µÄµþ¼Ó£®
£¨1£©ÒÑÖª¡°1 Àನ¡±ÖеÄÁ½¸ö²¨f1£¨x£©=sin£¨x+¦Õ1£©Óëf2£¨x£©=sin£¨x+¦Õ2£©µþ¼ÓºóÈÔÊÇ¡°1Àನ¡±£¬Çó¦Õ2-¦Õ1µÄÖµ£»
£¨2£©ÔÚ¡°AÀನ¡°ÖÐÓÐÒ»¸öÊÇf1£¨x£©=sinx£¬´Ó AÀನÖÐÔÙÕÒ³öÁ½¸ö²»Í¬µÄ²¨£¨Ã¿Á½¸ö²¨µÄ³õÏà¦Õ¶¼²»Í¬£©Ê¹µÃÕâÈý¸ö²»Í¬µÄ²¨µþ¼ÓÖ®ºóÊÇ¡°Æ½²¨¡±£¬¼´µþ¼Óºóy=0£¬²¢ËµÃ÷ÀíÓÉ£®
£¨1£©ÒÑÖª¡°1 Àನ¡±ÖеÄÁ½¸ö²¨f1£¨x£©=sin£¨x+¦Õ1£©Óëf2£¨x£©=sin£¨x+¦Õ2£©µþ¼ÓºóÈÔÊÇ¡°1Àನ¡±£¬Çó¦Õ2-¦Õ1µÄÖµ£»
£¨2£©ÔÚ¡°AÀನ¡°ÖÐÓÐÒ»¸öÊÇf1£¨x£©=sinx£¬´Ó AÀನÖÐÔÙÕÒ³öÁ½¸ö²»Í¬µÄ²¨£¨Ã¿Á½¸ö²¨µÄ³õÏà¦Õ¶¼²»Í¬£©Ê¹µÃÕâÈý¸ö²»Í¬µÄ²¨µþ¼ÓÖ®ºóÊÇ¡°Æ½²¨¡±£¬¼´µþ¼Óºóy=0£¬²¢ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦ÓÃ,Á½½ÇºÍÓë²îµÄÕýÏÒº¯Êý
רÌ⣺Èý½Çº¯ÊýµÄÇóÖµ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨1£©Ê×ÏȶԺ¯ÊýµÄ¹ØÏµÊ½½øÐкãµÈ±ä»»½øÒ»²½Çó³öº¯ÊýÖнǵĴóС£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛÔÙ¶Ôº¯Êý¹ØÏµÊ½½øÐб任×îºóÖ¤Ã÷³öº¯Êýʱƽ²¨£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛÔÙ¶Ôº¯Êý¹ØÏµÊ½½øÐб任×îºóÖ¤Ã÷³öº¯Êýʱƽ²¨£®
½â´ð£º
½â£º£¨1£©f1£¨x£©+f2£¨x£©=sin£¨x+¦µ1£©+sin£¨x+¦µ2£©
=£¨cos¦µ1+cos¦µ2£©sinx+£¨sin¦µ1+sin¦µ2£©cosx¦µ
ËùÒÔº¯ÊýµÄÕñ·ùΪ£º
=
Ôò£º
=1
¼´£ºcos(¦µ 1-¦µ2)=-
ËùÒÔ£º¦µ 1-¦µ 2=2k¦Ð¡À
£¨k¡ÊZ£©
£¨2£©Éèf2£¨x£©=Asin£¨x+¦µ1£©£¬f3£¨x£©=Asin£¨x+¦µ2£©
Ôò£º
f1£¨x£©+f2£¨x£©+f3£¨x£©
=Asinx+Asin£¨x+¦µ1£©+Asin£¨x+¦µ2£©
=Asinx£¨1+cos¦µ1+cos¦µ2£©+Acosx£¨sin¦µ1+sin¦µ2£©=0ºã³ÉÁ¢£®
Ôò£º
¼´£º
ÏûÈ¥¦µ2
µÃµ½£ºcos¦µ 1=-
ÈôÈ¡¦µ1=
£¬Ôò¿ÉÈ¡¦µ2=
´Ëʱ£ºf2(x)=Asin(x+
)£¬f3(x)=Asin(x+
)
f1£¨x£©+f2£¨x£©+f3£¨x£©
=A(sinx+(-
sinx+
cosx)+(-
sinx-
cosx))=0=0
ËùÒÔΪƽ²¨£®
=£¨cos¦µ1+cos¦µ2£©sinx+£¨sin¦µ1+sin¦µ2£©cosx¦µ
ËùÒÔº¯ÊýµÄÕñ·ùΪ£º
| (cos¦µ1+cos¦µ2)2+(sin¦µ1+sin¦µ 2)2 |
| 2+2cos(¦µ 1-¦µ 2) |
Ôò£º
| 2+2cos(¦µ 1-¦µ 2) |
¼´£ºcos(¦µ 1-¦µ2)=-
| 1 |
| 2 |
ËùÒÔ£º¦µ 1-¦µ 2=2k¦Ð¡À
| 2¦Ð |
| 3 |
£¨2£©Éèf2£¨x£©=Asin£¨x+¦µ1£©£¬f3£¨x£©=Asin£¨x+¦µ2£©
Ôò£º
f1£¨x£©+f2£¨x£©+f3£¨x£©
=Asinx+Asin£¨x+¦µ1£©+Asin£¨x+¦µ2£©
=Asinx£¨1+cos¦µ1+cos¦µ2£©+Acosx£¨sin¦µ1+sin¦µ2£©=0ºã³ÉÁ¢£®
Ôò£º
|
¼´£º
|
ÏûÈ¥¦µ2
µÃµ½£ºcos¦µ 1=-
| 1 |
| 2 |
ÈôÈ¡¦µ1=
| 2¦Ð |
| 3 |
| 4¦Ð |
| 3 |
´Ëʱ£ºf2(x)=Asin(x+
| 2¦Ð |
| 3 |
| 4¦Ð |
| 3 |
f1£¨x£©+f2£¨x£©+f3£¨x£©
=A(sinx+(-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
ËùÒÔΪƽ²¨£®
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶҪµã£ºÈý½Çº¯Êý¹ØÏµÊ½µÄºãµÈ±ä»»£¬ÐÅÏ¢ÌâµÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉú¶Ôʵ¼ÊÎÊÌâµÄÓ¦ÓÃÄÜÁ¦£¬ÊôÓÚÖеµÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÈçͼÊÇÕý·½ÌåµÄÆ½ÃæÕ¹¿ªÍ¼£¬ÔÚÕâ¸öÕý·½ÌåÖУ¬ÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©

| A¡¢BDÓëCF³É60¡ã½Ç |
| B¡¢BDÓëEF³É60¡ã½Ç |
| C¡¢ABÓëCD³É60¡ã½Ç |
| D¡¢ABÓëEF³É60¡ã½Ç |
| OC |
| OA |
| OB |
| A¡¢£¨1£¬+¡Þ£© |
| B¡¢£¨-¡Þ£¬-1£© |
| C¡¢£¨0£¬1£© |
| D¡¢£¨-1£¬0£© |