题目内容
| π |
| 2 |
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(
| x |
| 2 |
| π |
| 12 |
| x |
| 2 |
| π |
| 12 |
考点:正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)由图观察可得T,即求得ω,由f(
)=A,可解得φ,由f(x)=Asin(2x+
)过(0,1),可求得A,从而可求得解析式f(x)=2sin(2x+
).
(2)先求解析式得:g(x)=1+2sin(2x-
),由2kπ-
≤2x-
≤2kπ+
,(k∈Z)即可解得g(x)的单增区间.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
(2)先求解析式得:g(x)=1+2sin(2x-
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
解答:
解:(1)由图观察可知:T=(
+
)=π,
∴ω=
=2(∵ω>0),
∵f(x)=Asin(2x+φ),
∴
=
,
-
=
,
∵f(
)=A,
∴sin(2×
+φ)=1,
φ+
=2kπ+
,k∈Z,
∴φ=2kπ+
,k∈Z,
又|φ|<
,
∵φ=
,
∴f(x)=Asin(2x+
)过(0,1),
∴Asin
=1,
∴A=2,
∴f(x)=2sin(2x+
).
(2)g(x)=f(
-
)f(
+
)
=2sin[2(
-
)+
]•2sin[2(
+
)+
]
=4sinxsin(x+
)
=4sinx(
sinx+
cosx)
=2sin2x+2
sinxcosx
=1-cos2x+
sin2x
=1+
sin2x-cos2x
=1+2sin(2x-
),
由2kπ-
≤2x-
≤2kπ+
,(k∈Z),
得:kπ-
≤x≤kπ+
,
∴g(x)的单增区间:[kπ-
,kπ+
],(k∈Z).
| 5π |
| 12 |
| 7π |
| 12 |
∴ω=
| 2π |
| T |
∵f(x)=Asin(2x+φ),
∴
| T |
| 4 |
| π |
| 4 |
| 5π |
| 12 |
| π |
| 4 |
| π |
| 6 |
∵f(
| π |
| 6 |
∴sin(2×
| π |
| 6 |
φ+
| π |
| 3 |
| π |
| 2 |
∴φ=2kπ+
| π |
| 6 |
又|φ|<
| π |
| 2 |
∵φ=
| π |
| 6 |
∴f(x)=Asin(2x+
| π |
| 6 |
∴Asin
| π |
| 6 |
∴A=2,
∴f(x)=2sin(2x+
| π |
| 6 |
(2)g(x)=f(
| x |
| 2 |
| π |
| 12 |
| x |
| 2 |
| π |
| 12 |
=2sin[2(
| x |
| 2 |
| π |
| 12 |
| π |
| 6 |
| x |
| 2 |
| π |
| 12 |
| π |
| 6 |
=4sinxsin(x+
| π |
| 3 |
=4sinx(
| 1 |
| 2 |
| ||
| 2 |
=2sin2x+2
| 3 |
=1-cos2x+
| 3 |
=1+
| 3 |
=1+2sin(2x-
| π |
| 6 |
由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
得:kπ-
| π |
| 6 |
| π |
| 3 |
∴g(x)的单增区间:[kπ-
| π |
| 6 |
| π |
| 3 |
点评:本题主要考察了正弦函数的图象和性质,考察了二角和的正弦公式的应用,函数的解析式的求解是解题的关键,属于中档题.
练习册系列答案
相关题目
执行如图所示的程序框图,若输入m=7,n=3,则输出的S值为( )

| A、7 | B、42 | C、210 | D、840 |
已知双曲线
-
=1的右焦点为F2(3,0)则该双曲线的焦点到其渐近线的距离等于( )
| x2 |
| 4 |
| y2 |
| b2 |
A、
| ||
B、4
| ||
| C、3 | ||
| D、5 |