题目内容

已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.
考点:二次函数在闭区间上的最值,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)由条件可得二次函数的图象的对称轴为x=1,可设函数f(x)=a(x-1)2+2,a<0.根据f(-2)=-16,求得a的值,可得f(x)的解析式.
(2)分当t≥1时和当0<t<1时两种情况,分别利用函数f(x)的单调性,求得函数的最大值.
解答: 解:(1)∵已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2,
故函数的图象的对称轴为x=1,
可设函数f(x)=a(x-1)2+2,a<0.
根据f(-2)=9a+2=-16,求得a=-2,
故f(x)=-2(x-1)2+2=-2x2+4x.
(2)当t≥1时,函数f(x)在[t,t+1]上是减函数,
故最大值为f(t)=-2t2+4t,
当0<t<1时,函数f(x)在[t,1]上是增函数,在[1,t+1]上是减函数,
故函数的最大值为f(1)=2.
综上,fmax(x)=
2 ,0<t<1
-2t2+4t , t≥1
点评:本题主要考查二次函数的性质,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网