题目内容
通过随机询问110名性别不同的大学生是否爱好某项运动,其中60名男大学生中有40人爱好此项运动,女大学生中有20人爱好此项运动,能不能有99%以上的把握认为“爱好该项运动与性别有关”?
Χ2=
,其中n=a+b+c+d.
| 参考数据 | 当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
| 当Χ2>2.706时,有90%的把握判定变量A,B有关联; | |
| 当Χ2>3.841时,有95%的把握判定变量A,B有关联; | |
| 当Χ2>6.635时,有99%的把握判定变量A,B有关联. |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
考点:独立性检验
专题:计算题,概率与统计
分析:由题意得到列2×2列联表,代入公式计算k的值,和临界值表比对后即可得到答案.
解答:
解:列联表:
K2=
≈7.8.
有99%以上的把握认为“爱好该项运动与性别有关”.
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| 110×(40×30×-20×20)2 |
| 60×50×60×50 |
有99%以上的把握认为“爱好该项运动与性别有关”.
点评:本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关.
练习册系列答案
相关题目
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的标准方程为( )
| A、y2=-4x |
| B、y2=4x |
| C、x2=4y |
| D、x2=-4y |