题目内容
4.若抛物线y2=2px上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为( )| A. | y2=4x | B. | y2=6x | C. | y2=8x | D. | y2=10x |
分析 由已知条件,利用抛物线的性质得到$\frac{p}{2}$+2=4,求出p的值,
由此求出抛物线的标准方程.
解答 解:∵抛物线y2=2px上一点P(2,y0)到其准线的距离为4,
∴$\frac{p}{2}$+2=4,解得p=4,
∴抛物线的标准方程为y2=8x.
故选:C.
点评 本题考查了抛物线的标准方程与简单性质的应用问题,是基础题.
练习册系列答案
相关题目
15.对任意的n∈N*,数列{an}满足|an-cos2n|≤$\frac{1}{3}$且|an+sin2n|≤$\frac{2}{3}$,则an等于( )
| A. | $\frac{2}{3}$-sin2n | B. | sin2n-$\frac{2}{3}$ | C. | $\frac{1}{3}$-cos2n | D. | cos2n+$\frac{1}{3}$ |
16.
为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①$y={C_1}{x^2}+{C_2}$与模型;②$y={e^{{C_3}x+{C_4}}}$作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
其中${t_i}={x_i}^2$,$\overline t=\frac{1}{7}\sum_{i=1}^7{t_i}$,zi=lnyi,$\overline z=\frac{1}{7}\sum_{i=1}^7{z_i}$,
附:对于一组数据(μ1,ν1),(μ2,ν2),…(μn,νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为${R_1}^2=0.82,{R_2}^2=0.96$.,请根据相关指数判断哪个模型的拟合效果更好.
| 温度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
| 产卵数y/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
| t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
| z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
| $\overline x$ | $\overline t$ | $\overline y$ | $\overline z$ |
| 26 | 692 | 80 | 3.57 |
| $\frac{{\sum_{i=1}^7{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({z_i}-\overline z)({x_i}-\overline x)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({z_i}-\overline z)({t_i}-\overline t)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$ |
| 1157.54 | 0.43 | 0.32 | 0.00012 |
附:对于一组数据(μ1,ν1),(μ2,ν2),…(μn,νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为${R_1}^2=0.82,{R_2}^2=0.96$.,请根据相关指数判断哪个模型的拟合效果更好.