题目内容

15.已知函数f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x),x∈R,则f(x)是(  )
A.最小正周期为π的偶函数B.最小正周期为2π的奇函数
C.最小正周期为π的奇函数D.最小正周期为2π的偶函数

分析 利用三角函数恒等变换的应用化简函数解析式可得f(x)=-2sin2x,利用正弦函数的性质即可得解.

解答 解:∵f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x)
=$\frac{\sqrt{3}}{2}$cos2x-$\frac{1}{2}$sin2x-$\sqrt{3}$($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)
=-2sin2x,
∴可得:T=$\frac{2π}{2}$=π,利用正弦函数的性质可得f(x)为最小正周期为π奇函数.
故选:C.

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网