题目内容
3.已知$\vec a$与$\vec b$的夹角为$\frac{2π}{3}$,且$|\vec a|=2$,$|\vec b|=5$,则$(2\vec a-\vec b)•\vec a$=13.分析 利用平面向量的数量积定义计算$\overrightarrow{a}•\overrightarrow{b}$,${\overrightarrow{a}}^{2}$,将$(2\vec a-\vec b)•\vec a$展开即可得出答案.
解答 解:$\overrightarrow{a}•\overrightarrow{b}$=2×5×cos$\frac{2π}{3}$=-5,${\overrightarrow{a}}^{2}$=4,
∴$(2\vec a-\vec b)•\vec a$=2${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=8+5=13.
故答案为:13.
点评 本题考查了平面向量的数量积运算,属于基础题.
练习册系列答案
相关题目
13.定义在R上的奇函数f(x)满足:f(x+1)=f(x-1),且当-1<x<0时,f(x)=2x-1,则f(log220)等于( )
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$ |
14.
已知O为坐标原点,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,A,B分别为左、右顶点,过点F做x轴的垂线交双曲线于点P,Q,连接PB交y轴于点E,连结AE交QF于点M,若M是线段QF的中点,则双曲线C的离心率为( )
| A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | $\frac{7}{2}$ |
11.(理)设θ为直线$x-\sqrt{3}y-1=0$的倾斜角,则$sin(θ+\frac{π}{4})$=( )
| A. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{6}+1}}{4}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ |
18.已知集合$M=\{x|\frac{2x-1}{x+1}≤1\}$,N={x|-1<x<1},则( )
| A. | M?N | B. | N?M | C. | M=N | D. | M∩N=∅ |
8.运行如图所示的程序框图,输出的n等于( )

| A. | 30零 | B. | 29 | C. | 28 | D. | 27 |
15.已知函数f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x),x∈R,则f(x)是( )
| A. | 最小正周期为π的偶函数 | B. | 最小正周期为2π的奇函数 | ||
| C. | 最小正周期为π的奇函数 | D. | 最小正周期为2π的偶函数 |
6.在△ABC中,A1,B1分别是边BA,CB的中点,A2,B2分别是线段A1A,B1B的中点,…,An,Bn分别是线段${A_{n-1}}A,{B_{n-1}}B(n∈{N^*},n>1)$的中点,设数列{an},{bn}满足:向量$\overrightarrow{{B_n}{A_n}}={a_n}\overrightarrow{CA}+{b_n}\overrightarrow{CB}(n∈{N^*})$,有下列四个命题,其中假命题是( )
| A. | 数列{an}是单调递增数列,数列{bn}是单调递减数列 | |
| B. | 数列{an+bn}是等比数列 | |
| C. | 数列$\{\frac{a_n}{b_n}\}$有最小值,无最大值 | |
| D. | 若△ABC中,C=90°,CA=CB,则$|\overrightarrow{{B_n}{A_n}}|$最小时,${a_n}+{b_n}=\frac{1}{2}$ |