题目内容
对于三段论“因为指数函数y=ax是增函数,y=(
)x是指数函数,所以y=(
)x是增函数”,下列说法正确的是( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、是一个正确的推理 |
| B、大前提错误导致结论错误 |
| C、小前提错误导致结论错误 |
| D、推理形式错误导致结论错误 |
考点:进行简单的合情推理
专题:推理和证明
分析:指数函数y=ax(a>0且a≠1)是R上的增函数,这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,即大前提是错误的.
解答:
解:指数函数y=ax(a>0且a≠1)是R上的增函数,
这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,
大前提是错误的,
∴得到的结论是错误的,
∴在以上三段论推理中,大前提错误.
故选:B.
这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,
大前提是错误的,
∴得到的结论是错误的,
∴在以上三段论推理中,大前提错误.
故选:B.
点评:本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.
练习册系列答案
相关题目
cos2
-
的值为( )
| π |
| 8 |
| 1 |
| 2 |
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|
设函数y=cosx+1在x=0和x=
处切线斜率分别为k1,k2,则k1,k2的大小关系为( )
| π |
| 2 |
| A、k1>k2 |
| B、k1<k2 |
| C、k1=k2 |
| D、不确定 |
若﹁p是﹁q的必要不充分条件,则p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分且必要条件 |
| D、既不充分也不必要条件 |
已知曲线y=2x2上一点A(1,2),则在点A处的切线斜率等于( )
| A、1 | B、2 | C、4 | D、8 |
已知直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则a-b=( )
| A、-1 | B、-4 | C、3 | D、-2 |