题目内容
7.设x,y满足约束条件$\left\{\begin{array}{l}2x+y≤4\\ x-y≥-1\\ x-2y≤2\end{array}\right.$,则$z=\frac{x}{2}+y$的取值范围是$[-5,\frac{5}{2}]$.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}2x+y≤4\\ x-y≥-1\\ x-2y≤2\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y=-1}\\{x-2y=2}\end{array}\right.$,解得A(-4,-3),
联立$\left\{\begin{array}{l}{x-y=-1}\\{2x+y=4}\end{array}\right.$,解得B(1,2),
化$z=\frac{x}{2}+y$为y=-$\frac{x}{2}+z$,由图可知,当直线y=-$\frac{x}{2}+z$分别过A、B时,z有最小值和最大值分别为-5、$\frac{5}{2}$.
∴$z=\frac{x}{2}+y$的取值范围是:$[-5,\frac{5}{2}]$.
故答案为:$[-5,\frac{5}{2}]$.
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
17.
如图所示,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,AB=1,BC=PA=2,则该几何体外接球的表面积为( )
| A. | 4π | B. | 9π | C. | 12π | D. | 36π |
18.过圆x2+y2-8x-2y+8=0内一点P(3,-1)的最长弦,最短弦所在的直线方程式分别是( )
| A. | x-y-4=0,2x-y-7=0 | B. | 2x+y-5=0,x-2y-5=0 | ||
| C. | x-2y-1=0,2x-y-7=0 | D. | 2x-y-7=0,x+2y-1=0 |
2.已知曲线$f(x)=\frac{a}{x}(x>0,a>0)$上任一点P(x0,f(x0)),在点P处的切线与x,y轴分别交于A,B两点,若△OAB的面积为4,则实数a的值为( )
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
12.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的说明;
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
| 数学 | 108 | 103 | 137 | 112 | 128 | 120 | 132 |
| 物理 | 74 | 71 | 88 | 76 | 84 | 81 | 86 |
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点(3,2),当a2+b2取得最小值时,椭圆的离心率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
17.某几何体的三视图如图所示,则其表面积为( )

| A. | $12+2\sqrt{2}$ | B. | $8+2\sqrt{2}$ | C. | $4+4\sqrt{2}$ | D. | $8+4\sqrt{2}$ |