题目内容

2.已知(x2-2x-3)n=a0+a1x+…+a2nx2n(x∈R,n∈N*),且$\sum_{i=0}^{2n}$ai=-1024.
(1)求n的值
(2)求a1和a2值.

分析 (1)令x=1即可得出.
(2)(x2-2x-3)5化为(x-3)5(x+1)5,利用二项式定理展开可得:$[(-3)^{5}+{∁}_{5}^{1}(-3)^{4}x+{∁}_{5}^{2}(-3)^{3}{x}^{2}+…]$ $[1+{∁}_{5}^{1}x+{∁}_{5}^{2}{x}^{2}+…]$,即可得出.

解答 解:(1)令x=1,可得:(1-2-3)n=a0+a1+…+a2n
∵$\sum_{i=0}^{2n}$ai=-1024,∴(-4)n=-1024,解得n=5.
(2)(x2-2x-3)5=(x-3)5(x+1)5=$[(-3)^{5}+{∁}_{5}^{1}(-3)^{4}x+{∁}_{5}^{2}(-3)^{3}{x}^{2}+…]$ $[1+{∁}_{5}^{1}x+{∁}_{5}^{2}{x}^{2}+…]$,
∴a1=$(-3)^{5}{∁}_{5}^{1}$+${∁}_{5}^{1}(-3)^{4}$=-810.
a2=$(-3)^{5}•{∁}_{5}^{2}$+${∁}_{5}^{1}(-3)^{4}•{∁}_{5}^{1}$+${∁}_{5}^{2}(-3)^{3}$=(-3)3×(90-75+10)=-675.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网