题目内容
7.已知数列{an}满足a1=2,an+an+1+n2=0.则a31=-463.分析 由已知数列递推式可得${a}_{n}+{a}_{n-1}=-(n-1)^{2}$(n≥2),两式作差可得an+1-an-1=-2n+1(n≥2).然后分别取n=2,4,…,30,得到15个等式,累加即可求得a31.
解答 解:在数列{an}中,由an+an+1+n2=0,
得${a}_{n+1}+{a}_{n}=-{n}^{2}$,
∴${a}_{n}+{a}_{n-1}=-(n-1)^{2}$(n≥2),
两式作差得:an+1-an-1=-2n+1(n≥2).
∴a3-a1=-3,a5-a3=-7,a7-a5=-11,…,a31-a29=-59.
累加得:${a}_{31}-{a}_{1}=15×(-3)+\frac{15×14×(-4)}{2}=-465$,
∴a31=-463.
故答案为:-463.
点评 本题考查数列递推式,考查了累加法求数列的通项公式,训练了等差数列前n项和得求法,是中档题.
练习册系列答案
相关题目
16.过直线x-y-3=0与2x-y-5=0的交点,且与向量$\overrightarrow{n}$=(1,-3)垂直的直线方程是( )
| A. | x-3y-5=0 | B. | 3x+y-5=0 | C. | x+3y-5=0 | D. | x-y-5=0 |
17.在平面直角坐标系中,|$\overrightarrow{a}$|=2014,$\overrightarrow{a}$与x轴非负半轴的夹角为$\frac{π}{3}$,$\overrightarrow{a}$始点与原点重合,终点在第一象限,则向量$\overrightarrow{a}$的坐标是( )
| A. | (1007$\sqrt{2}$,1007$\sqrt{2}$) | B. | (-1007$\sqrt{2}$,1007$\sqrt{2}$) | C. | (1007,1007$\sqrt{3}$) | D. | (1007$\sqrt{3}$,1007) |