题目内容
某四面体的三视图均为直角三角形,如图,则该四面体的表面积为( )
A、72+24
| ||
B、96+24
| ||
| C、126 | ||
| D、64 |
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体是三棱锥,且三棱锥的一条侧棱与底面垂直,结合直观图判断各面的形状,根据三视图的数据求相关几何量的数据,把数据代入三角形面积公式计算.
解答:
解:由三视图知:几何体是三棱锥,且三棱锥的一条侧棱与底面垂直,高为8,
底面为直角三角形,直角边长分别为6、8,如图:
SB=8
,BC⊥SB,AC=10,SA⊥平面ABC,∴SA⊥AC
∴几何体的表面积S=
×8×8+
×8×6+
×10×8+
×8
×6=96+24
.
故选:B.
底面为直角三角形,直角边长分别为6、8,如图:
SB=8
| 2 |
∴几何体的表面积S=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 2 |
故选:B.
点评:本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是关键.
练习册系列答案
相关题目
已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校高一年级1000名学生的某次考试成绩服从正态分布N(90,152),则此次成绩在(60,120)范围内的学生大约有( )
| A、997人 | B、972人 |
| C、954人 | D、683人 |
点P是圆C:(x-3)2+(y+4)2=4上的动点,点O为坐标原点,则|OP|的最大值为( )
| A、5 | B、6 | C、7 | D、8 |
一个几何体的三视图如图所示,则它的体积为( )

| A、40 | ||
B、
| ||
C、
| ||
D、
|
设偶函数f(x)的定义域为(-π,0)∪(0,π),当x∈(0,π)时,f(x)=-f′(
)sin x-πln x,若a=f(logπ3),b=f(-log39),c=f(log23),则a、b、c的大小关系为( )
| π |
| 2 |
| A、a>b>c |
| B、b>c>a |
| C、c>a>b |
| D、a>c>b |