题目内容

3.在数列{an}中,若存在非零实数T,使得${a_{n+T}}={a_n}({N∈{n^*}})$成立,则称数列{an}是以T为周期的周期数列.若数列{bn}满足bn+1=|bn-bn-1|,且b1=1,b2=a(a≠0),则当数列{bn}的周期最小时,其前2017项的和为(  )
A.672B.673C.3024D.1345

分析 首先要弄清题目中所说的周期数列的含义,然后利用这个定义,针对题目中的数列的周期情况分类讨论,从而将a值确定,进而将数列的前2017项和确定.

解答 解:若其最小周期为1,则该数列是常数列,即每一项都等于1,此时a=1,
该数列的项分别为1,1,0,1,1,0,1,1,0,…,即此时该数列是以3为周期的数列;
若其最小周期为2,则有a3=a1,即|a-1|=1,a-1=1或-1,a=2或a=0,又a≠0,故a=2,
此时该数列的项依次为1,2,1,1,0,…,由此可见,此时它并不是以2为周期的数列.
综上所述,当数列{bn}的周期最小时,其最小周期是3,a=1,又2017=3×672+1,
故此时该数列的前2017项和是672×(1+1+0)+1=1345.
故选:D

点评 此题考查对新概念的理解,考查了学生分析问题和解决问题的能力,考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网