题目内容
设f0(x)=cosx,且对任意的n∈N,都有 fn+1(x)=fn′(x),则f2013(x)=( )
| A、cosx | B、sinx |
| C、-sinx | D、-cosx |
考点:导数的运算
专题:导数的概念及应用
分析:根据题中已知条件先找出函数fn(x)的规律,便可发现fn(x)的循环周期为4,从而求出f2013(x)的值.
解答:
解:∵f0(x)=cosx
f1(x)=f0'(x)=-sinx
f2(x)=f1'(x)=-cosx
f3(x)=f2'(x)=sinx
f4(x)=f3'(x)=cosx
…
由上面可以看出,以4为周期进行循环
∴f2013(x)=f1(x)=-sinx.
故选:C
f1(x)=f0'(x)=-sinx
f2(x)=f1'(x)=-cosx
f3(x)=f2'(x)=sinx
f4(x)=f3'(x)=cosx
…
由上面可以看出,以4为周期进行循环
∴f2013(x)=f1(x)=-sinx.
故选:C
点评:本题考查三角函数求导、函数周期性的应用,考查观察、归纳方法的应用.
练习册系列答案
相关题目
下列函数中,既是奇函数又是增函数的为( )
| A、y=x+1 | ||
| B、y=-x3 | ||
C、y=
| ||
| D、y=x|x| |
设函数f(x)=a+x-lnx有两个零点,则a的范围为( )
| A、[1,+∞) |
| B、(1,+∞) |
| C、(-∞,-1) |
| D、(-∞,1] |
数列1,2,2,3,3,3,4,4,4,4,…中第100项的值是( )
| A、10 | B、13 | C、14 | D、100 |
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
),c=f(-2),则a,b,c大小关系是( )
| 2 |
| A、a>b>c |
| B、a>c>b |
| C、b>c>a |
| D、c>b>a y |
已知函数f(x)是R上的增函数,A(0,-2),B(4,2)是其图象上的两点,那么|f(
)|<2的解集是( )
| 1 |
| 2x+1 |
| A、(1,4) |
| B、(1,+∞) |
| C、(-∞,1)∪[4,+∞] |
| D、(-3,+∞) |