题目内容
10.分析 连结BD,则可证AB⊥BD,建立平面直角坐标系求出$\overrightarrow{AC},\overrightarrow{CD}$的坐标,代入数量积公式计算即可.
解答
解:连结BD,在△ABD中,由余弦定理得BD=$\sqrt{{1}^{2}+{2}^{2}-4cos\frac{π}{3}}$=$\sqrt{3}$,∴AB⊥BD.
∵BC=DC,∠DCB=$\frac{π}{2}$,∴BC=$\frac{\sqrt{6}}{2}$,∠ABC=$\frac{π}{2}+\frac{π}{4}$=$\frac{3π}{4}$.
以AB,BD为坐标轴建立平面直角坐标系,如图,则A(-1,0),C($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$),D(0,$\sqrt{3}$).
∴$\overrightarrow{AC}$=($\frac{\sqrt{3}}{2}+1$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{CD}$=(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{AC}$•$\overrightarrow{CD}$=($\frac{\sqrt{3}}{2}+1$)×(-$\frac{\sqrt{3}}{2}$)+$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{3}}{2}$=-$\frac{\sqrt{3}}{2}$.
故答案为-$\frac{\sqrt{3}}{2}$.
点评 本题考查了平面向量的数量积运算,建立坐标系可以简化计算.
练习册系列答案
相关题目
18.设$\overrightarrow{m}$=(a,2),$\overrightarrow{n}$=(1,b-1),a>0,b>0,若$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为$\frac{π}{2}$,则$\frac{1}{a}$+$\frac{2}{b}$的最小值是( )
| A. | 无法确定 | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{9}{2}$ |
18.若θ是第四象限角,且|cos$\frac{θ}{2}$|=-cos$\frac{θ}{2}$,则$\frac{θ}{2}$是( )
| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |