题目内容

在△ABC中,若a=1,c=
3
,∠C=
3
,则b=
 
考点:正弦定理
专题:解三角形
分析:根据正弦定理和题意先求出sinA的值,再由内角的关系和特殊角的正弦值求出A,根据内角和定理求B,再求出b的值.
解答: 解:由正弦定理
c
sinC
=
a
sinA
,得sinA=
asinC
c
=
3
2
3
=
1
2

因为∠C=
3
是钝角,则A=
π
6

所以B=π-A-C=
π
6
,则b=a=1,
故答案为:1.
点评:本题考查正弦定理,三角形的内角和定理的应用,熟练掌握公式和特殊角的三角函数值是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网