题目内容

要制作一个容积为4m3,高为1m的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是每平方米10元,求如何制作该溶器的总造价最低.
考点:函数最值的应用
专题:函数的性质及应用,不等式的解法及应用
分析:设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.
解答: 解:设池底长和宽分别为a,b,成本为y,
则∵长方形容器的容器为4m3,高为1m,
故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,
∵a+b≥2
ab
=4,
故当a=b=2时,y取最小值160,
即该容器的最低总造价是160元.
点评:本题考查了基本不等式的应用,属于基础题,由实际问题向数学问题转化是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网