题目内容

已知向量序列:
a1
a2
a3
,…,
an
,…满足如下条件:|
a1
|=4|
d
|=2,2
a1
d
=-1且
an
-
an-1
=
d
(n=2,3,4,…).若
a1
ak
=0,则k=
 
;|
a1
|,|
a2
|,|
a3
|,…,|
an
|,…中第
 
项最小.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由题意可得
ak
=
a1
+(k-1)
d
,由
a1
ak
=0可得k的方程,解方程可得;又可得|
an
|2
=
1
4
(k-3)2+3,由二次函数的最值可得结论.
解答: 解:∵
an
-
an-1
=
d
,∴
ak
=
a1
+(k-1)
d

又∵|
a1
|=4|
d
|=2,2
a1
d
=-1
∴|
a1
|=2,|
d
|=
1
2
a1
d
=-
1
2

a1
ak
=
a1
•[
a1
+(k-1)
d
]=
a1
2
+(k-1)
a1
d
=22+(k-1)(-
1
2
)=0,
解得k=9
|
ak
|2
=[
a1
+(k-1)
d
]2=
a1
2
+(k-1)2
d
2
+2(k-1)
a1
d
=22+
1
4
(k-1)2-(k-1)=
1
4
(k-3)2+3,
故当k=3时,上式取最小值,即|
a3
|最小,
故答案为:9;3
点评:本题考查平面向量数量积的运算,涉及二次函数的最值得应用,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网