题目内容

7.设P是曲线y=x-$\frac{1}{2}$x2-lnx上的一个动点,记此曲线在点P点处的切线的倾斜角为θ,则θ的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[$\frac{3π}{4}$,π)D.[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π)

分析 求出原函数的导函数,利用基本不等式求出导函数的值域,结合直线的斜率是直线倾斜角的正切值求解.

解答 解:由y=x-$\frac{1}{2}$x2-lnx,得y′=1-x-$\frac{1}{x}$(x>0),
∵1-x-$\frac{1}{x}$=1-(x+$\frac{1}{x}$)$≤1-2\sqrt{x•\frac{1}{x}}=-1$,
当且仅当x=1时上式“=”成立.
∴y′≤-1,即曲线在点P点处的切线的斜率小于等于-1.
则tanθ≤-1,
又θ∈[0,π),
∴θ∈($\frac{π}{2},\frac{3π}{4}$].
故选:A.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网