题目内容
计算:
(1)(2
)
+(0.1)-2+(2
) -
-3π0+
(2)2
÷4
•3
•
.
(1)(2
| 7 |
| 8 |
| 1 |
| 2 |
| 10 |
| 27 |
| 2 |
| 3 |
| 37 |
| 48 |
(2)2
| 3 | a |
| 6 | ab |
b3•
|
| 3 | b2 |
考点:有理数指数幂的化简求值,根式与分数指数幂的互化及其化简运算
专题:计算题
分析:根据幂的运算法则,以及根式化为分数指数幂的方法,进行计算即可.
解答:
解:(1)原式=(
)
+
+(
)-
-3×1+
=
+100+(
)
-3+
=
+97+
+
=
+97+
=
+97
;
(2)原式=
•3(b3•a
)
•b
=
•3b
•a
•b
=
a
-
+
•b-
+
+
=
a
b
.
| 23 |
| 8 |
| 1 |
| 2 |
| 1 |
| (0.1)2 |
| 64 |
| 27 |
| 2 |
| 3 |
| 37 |
| 48 |
=
|
| 27 |
| 64 |
| 2 |
| 3 |
| 37 |
| 48 |
=
| ||
| 4 |
| 9 |
| 16 |
| 37 |
| 48 |
=
| ||
| 4 |
| 64 |
| 48 |
=
| ||
| 4 |
| 1 |
| 3 |
(2)原式=
2
| |||
4
|
| 5 |
| 6 |
| 1 |
| 2 |
| 2 |
| 3 |
=
a
| ||
2(ab)
|
| 3 |
| 2 |
| 5 |
| 12 |
| 2 |
| 3 |
=
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 5 |
| 12 |
| 1 |
| 6 |
| 3 |
| 2 |
| 2 |
| 3 |
=
| 3 |
| 2 |
| 7 |
| 12 |
| 11 |
| 6 |
点评:本题考查了根式化为分数指数幂的运算问题,也考查了幂的运算问题,是基础题目.
练习册系列答案
相关题目
已知函数y=f(x)是偶函数,且y=f(x)在[0,2]上是减函数,则( )
| A、f(2)<f(-1)<f(0) |
| B、f(-1)<f(0)<f(2) |
| C、f(-1)<f(2)<f(0) |
| D、f(0)<f(-1)<f(2) |
设函数f(x)=
是R上的单调递减函数,则实数a的取值范围为( )
|
A、(-∞,
| ||
| B、(-∞,2) | ||
| C、(0,2) | ||
D、[
|