题目内容
一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:
(1)作出散点图;
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?b=
=
,a=
-b
,
=bx+a.
| 转速x(转/秒) | 16 | 14 | 12 | 8 |
| 每小时生产缺损零件数y(件) | 11 | 9 | 8 | 5 |
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?b=
| |||||||
|
| |||||||
|
. |
| y |
. |
| x |
| y |
考点:线性回归方程
专题:应用题,概率与统计
分析:(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
解答:
解:(1)画出散点图,如图所示:
(2)
=12.5,
=8.25,∴b=
≈0.7286,
a=-0.8571
∴回归直线方程为:y=0.7286x-0.8571;
(3)要使y≤10,则0.728 6x-0.857 4≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
(2)
. |
| x |
. |
| y |
| 438-4×12.5×8.25 |
| 660-4×12.52 |
a=-0.8571
∴回归直线方程为:y=0.7286x-0.8571;
(3)要使y≤10,则0.728 6x-0.857 4≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
点评:本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.
练习册系列答案
相关题目
已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值( )
| A、可能为0 | B、恒大于0 |
| C、恒小于0 | D、可正可负 |