题目内容

一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:
转速x(转/秒)1614128
每小时生产缺损零件数y(件)11985
(1)作出散点图;
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?b=
n
i-1
(xi-
.
x
)(yi-
.
y
)
n
i-1
(xi-
.
x
)2
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x12-n
.
x
2
,a=
.
y
-b
.
x
y
=bx+a.
考点:线性回归方程
专题:应用题,概率与统计
分析:(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
解答: 解:(1)画出散点图,如图所示:
(2)
.
x
=12.5,
.
y
=8.25,∴b=
438-4×12.5×8.25
660-4×12.52
≈0.7286,
a=-0.8571
∴回归直线方程为:y=0.7286x-0.8571;
(3)要使y≤10,则0.728 6x-0.857 4≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
点评:本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网