题目内容
某少数民族的刺绣有着悠久的历史,如图所示(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.则f(5)等于( )

| A、39 | B、40 | C、41 | D、42 |
考点:归纳推理
专题:规律型
分析:先分别观察给出正方体的个数为:1,1+4,1+4+8,…总结一般性的规律,将一般性的数列转化为特殊的数列再求解.
解答:
解:根据前面四个发现规律:f(2)-f(1)=4×1,
f(3)-f(2)=4×2,
f(4)-f(3)=4×3,…
,f(n)-f(n-1)=4(n-1)这n-1个式子相加可得:f(n)=2n2-2n+1.
当n=5时,f(6)=41.
故选:C
f(3)-f(2)=4×2,
f(4)-f(3)=4×3,…
,f(n)-f(n-1)=4(n-1)这n-1个式子相加可得:f(n)=2n2-2n+1.
当n=5时,f(6)=41.
故选:C
点评:本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.
练习册系列答案
相关题目
已知f(x)=
是R上的增函数,则a的取值范围是( )
|
| A、(0,1) |
| B、(1,4] |
| C、(1,+∞) |
| D、[4,+∞) |
已知向量
=(cos75°,sin75°),
=(cos15°,sin15°),那么|
+2
|的值为( )
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
| D、3 |
若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )
| A、M∪N |
| B、M∩N |
| C、(∁UM)∪(∁UN) |
| D、(∁UM)∩(∁UN) |
已知向量
,
是夹角为60°的两个单位向量,向量
+λ
(λ∈R)与向量
-2
垂直,则实数λ的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、1 | B、-1 | C、2 | D、0 |
在钝角三角形ABC中,若B=45°,a=
,则边长c的取值范围是( )
| 2 |
A、(1,
| ||
B、(0,1)∪(
| ||
| C、(1,2) | ||
| D、(0,1)∪(2,+∞) |