题目内容

已知函数f(x)=
2x+1
x+1

(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
考点:函数单调性的判断与证明,函数的值域
专题:函数的性质及应用
分析:(1)根据增函数的定义进行判断和证明;
(2)利用(1)的结论,利用函数的单调性.
解答: 解:任取x1,x2∈[1,+∞),且x1<x2
f(x1)-f(x2)=
2x1+1
x1+1
-
2x2+1
x2+1
=
x1-x2
(x1+1)(x2+1)

∵x1-x2<0,(x1+1)(x2+1)>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以函数f(x)在[1,+∞)上是增函数.
(2)由(1)知函数f(x)在[1,4]上是增函数,
∴最大值f(4)=
2×4+1
4+1
=
9
5
,最小值f(1)=
2×1+1
1+1
=
3
2
点评:本题主要考查函数的单调性和最大(小)值,属于比较基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网