题目内容
已知f(x)=
,则f(
)+f(-
)的值等于 .
|
| 1 |
| 2 |
| 1 |
| 2 |
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答:
解:∵f(x)=
,
∴f(
)+f(-
)=cos(-π)+log2
=-1-1=-2.
∴f(
)+f(-
)=-2.
故答案为:-2.
|
∴f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:-2.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.
练习册系列答案
相关题目
已知函数f(x)=2sinxcosx-1(x∈R),给出下列四个命题( )
①若f(x1)=-f(x2),则x1=-x2;
②f(x)的最小正周期是2π;
③f(x)在区间[-
,
]上是增函数;
④f(x)的图象关于直线x=
对称,
其中正确的命题是( )
①若f(x1)=-f(x2),则x1=-x2;
②f(x)的最小正周期是2π;
③f(x)在区间[-
| π |
| 4 |
| π |
| 4 |
④f(x)的图象关于直线x=
| 3π |
| 4 |
其中正确的命题是( )
| A、①②④ | B、①③ | C、②③ | D、③④ |
已知函数y=f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,xf′(x)<f(-x)成立,若a=
f(
),b=(lg3)f(lg3),c=(log2
)f(log2
),则a,b,c的大小关系是( )
| 3 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| A、c<b<a |
| B、c<a<b |
| C、a<b<c |
| D、a<c<b |
已知f(x)=
是R上的单调递增函数,则实数a的取值范围( )
|
| A、(1,+∞) |
| B、(1,14) |
| C、(6,14) |
| D、[6,14) |