题目内容
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).
(1)判断k为何值时,f(x)为奇函数,并证明;
(2)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2-2mx+3)>3对任意x∈R恒成立,求实数m的取值范围.
解:(1)若f(x)在R上为奇函数,则f(0)=0,
令a=b=0,则f(0+0)=f(0)+f(0)+k,所以k=0.
证明:由f(a+b)=f(a)+f(b),令a=x,b=-x,
则f(x-x)=f(x)+f(-x),
又f(0)=0,则有0=f(x)+f(-x),即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.
(2)因为f(4)=f(2)+f(2)-1=5,所以f(2)=3.
所以f(mx2-2mx+3)>3=f(2)对任意x∈R恒成立.
又f(x)是R上的增函数,所以mx2-2mx+3>2对任意x∈R恒成立,
即mx2-2mx+1>0对任意x∈R恒成立,
当m=0时,显然成立;
当m≠0时,由
得0<m<1.
所以实数m的取值范围是[0,1).
练习册系列答案
相关题目