题目内容

13.如图,在△ABC中,AC=10,$AB=2\sqrt{19}$,BC=6,D是边BC延长线上的一点,∠ADB=30°,求AD的长.

分析 利用余弦定理,求出∠ACB=60°,∠ACD=120°,在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,利用正弦定理可得结论.

解答 解:在△ABC中,AB=10,AC=14,BC=6,
由余弦定理得$cos∠ACB=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}=\frac{100+36-76}{2×10×6}=\frac{1}{2}$,
所以∠ACB=60°,∠ACD=120°,
在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,…8分
由正弦定理得,$\frac{AC}{sin∠ADB}=\frac{AD}{sin∠ACB}$
所以$AD=\frac{AC•sin∠ACB}{sin∠ADB}=\frac{{10•sin{{120}°}}}{{sin{{30}°}}}=10\sqrt{3}$…12分.

点评 本题考查正弦、余弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网