题目内容

1.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足$\frac{BE}{CE}$=$\frac{AB}{AC}$,直线ED交外接圆于点M,求证:∠AMH=90°.

分析 作高BP,CQ.连结MB、MC、MP、MQ、PQ.构建相似三角形△MBQ∽△MCP,从而推知点M、A、P、Q、H五点共圆,最后根据圆周角定理证得结论.

解答 证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.
$\frac{BD}{DC}$=$\frac{{S}_{△BME}}{{S}_{△CME}}$=$\frac{\frac{1}{2}BM•BE•sin∠MBE}{\frac{1}{2}CM•CE•sin∠MCE}$=$\frac{BM}{CM}$•$\frac{AB}{AC}$①
$\frac{BD}{DC}$=$\frac{BQ}{CP}$•$\frac{AP}{AQ}$=$\frac{BQ}{CP}$•$\frac{AB}{AC}$②,
由①②得:$\frac{BM}{CM}$=$\frac{BQ}{CP}$,
又∠MBA=∠MCA,
∴△MBQ∽△MCP,
∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,
又AH为直径,
∴∠AMH=90°.

点评 本题考查了弦切角,掌握塞瓦定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网