题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-b)cosA=acosB.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC的面积的最大值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)由正弦定理和三角函数公式可得cosA=
1
2
,可得A=
π
3

(2)由余弦定理结合基本不等式可得16=b2+c2-bc≥2bdc-bc,可得bc的最大值为16,进而可得△ABC的面积的最大值.
解答: 解:(1)∵(2c-b)cosA=acosB,
∴由正弦定理可得(2sinA-sinB)cosA=sinAcosB,
变形可得2sinCcosA=sinBcosA+sinAcosB=sin(A+B)=sinC,
∵C为三角形的内角,sinC≠0,∴cosA=
1
2
,A=
π
3

(2)由余弦定理可得a2=b2+c2-2bccosA,
代入数据可得16=b2+c2-bc≥2bdc-bc,∴bc≤16
当且仅当b=c时取等号,
∴△ABC的面积S=
1
2
bcsinA=
3
4
bc≤4
3

当且仅当b=c时取等号,
∴△ABC的面积的最大值为4
3
点评:本题考查正余弦定理,涉及基本不等式求最值,属比较基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网