题目内容
9.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点到该双曲线渐近线的距离等于( )| A. | a | B. | b | C. | $\sqrt{ab}$ | D. | $\frac{a+b}{2}$ |
分析 双曲线的右焦点(c,0),一条渐近线是bx-ay=0,由点到直线距离公式可求出双曲线的右焦点到一条渐近线的距离.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点(c,0),一条渐近线是bx-ay=0,
由点到直线距离公式,双曲线的一个焦点到一条渐近线的距离是
$\frac{|bc-a×0|}{\sqrt{{a}^{2}+{b}^{2}}}$=b;
故选:B.
点评 本题是简单题型,解题时越是简单题越要注意,避免出现会而不对的情况.
练习册系列答案
相关题目
19.某班5名学生的数学和物理成绩如下表:
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A | B | C | D | E | |
| 数学成绩(x) | 88 | 76 | 73 | 66 | 63 |
| 物理成绩(y) | 78 | 65 | 71 | 64 | 61 |
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
20.已知集合A={x|log2(4-x)<1},B={x|3x-1≤9},则A∩B=( )
| A. | (2,3) | B. | (2,4) | C. | (2,3] | D. | [2,3] |
17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$或$2\sqrt{2}$ | D. | 2 |
14.为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了50人,他们年龄的频数分布及赞同“就近入学”人数如表:
(1)在该样本中随机抽取3人,求至少2人支持“就近入学”的概率.
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.
| 年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞同 | 4 | 5 | 12 | 8 | 2 | 1 |
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.