题目内容

设l为直线,α,β是两个不同的平面,下列命题中正确的是(  )
A、若l∥α,l∥β,则α∥β
B、若α∥β,l∥α,则l∥β
C、若l⊥α,l∥β,则α⊥β
D、若α⊥β,l∥α,则l⊥β
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:借助于长方体中的线面关系直观判断,恰当选取长方体中的线与面来表示题目中涉及到的线、面,然后进行判断.
解答: 解:对于A项,在长方体中,任何一条棱都有和它相对的两个平面平行,但这两个平面相交,所以A不对;
对于B项,若α、β分别是长方体的上下底面,在下底面所在平面中任选一条直线l,都有l∥α,但l?β,所以B不对;
对于D项,在长方体中,令下底面为β,左边侧面为α,此时α⊥β,在右边侧面中取一条对角线l,则l∥α,但l与β不垂直,故D不对;
对于C项,设平面γ∩β=m,且l?γ,∵l∥β,所以l∥m,又∵l⊥α,所以m⊥α,由γ∩β=m得m?β,∴α⊥β.
故选C
点评:在选择题中考查空间线面关系中的平行与垂直关系的判断问题,一般会借助于长方体中的线面来直观判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网