题目内容

函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny=0(m>-1,n>0)上,则
1
m+1
+
1
n
的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:函数y=a1-x(a>0,a≠1)的图象恒过定点A,知A(1,1),点A在直线mx+ny-1=0上,得m+n=1又mn>0,∴m>0,n>0,适时应用“1”的代换是解本题的关键,可以用基本不等式求最值的形式求最值.
解答: 解:由已知定点A坐标为(1,1),由点A在直线mx+ny-1=0上,
∴m+n=1,
又m>-1,
∴m+1>0,n>1,
1
m+1
+
1
n
=
1
2
(m+1+n)(
1
m+1
+
1
n
)=
1
2
(2+
m+1
n
+
n
m+1
)≥
1
2
(2+2
m+1
n
n
m+1
)
=2,当且仅当m+1=n时取等号.
故答案为:2.
点评:均值不等式是不等式问题中的重要公式,应用十分广泛.在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.当均值不等式中等号不成立时,常利用函数单调性求最值.也可将已知条件适当变形,再利用均值不等式,使得等号成立.有时也可利用柯西不等式以确保等号成立,取得最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网