题目内容

3.三棱锥V-ABC的三条棱VA,VB,VC两两垂直,三个侧面与底面所成的二面角大小分别为α,β,γ.求证:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$.

分析 设三棱锥V-ABC的三条棱VA,VB,VC的长度分别为a、b、c,如图,过C作CD⊥AB于D,连结VD,三棱锥V-ABC的三条棱VA,VB,VC两两垂直,得∠VDC就是侧面VAB与地面ABC所成角α.cos2α=$\frac{1}{1+ta{n}^{2}α}=\frac{1}{1+(\frac{c}{VD})^{2}}$=$\frac{{a}^{2}{b}^{2}}{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}$;同理cos2β=$\frac{{a}^{2}{c}^{2}}{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}$,cos2γ=$\frac{{b}^{2}{c}^{2}}{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}$.cos2α+cos2β+cos2γ=1,再证$\frac{{a}^{2}+{b}^{2}+{c}^{2}}{\sqrt{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}}≥\sqrt{3}$.

解答 解:设三棱锥V-ABC的三条棱VA,VB,VC的长度分别为a、b、c
如图,过C作CD⊥AB于D,连结VD,∵三棱锥V-ABC的三条棱VA,VB,VC两两垂直,∴VC⊥AB
∴AB⊥面VDC,∴∠VDC就是侧面VAB与地面ABC所成角α.
cos2α=$\frac{1}{1+ta{n}^{2}α}=\frac{1}{1+(\frac{c}{VD})^{2}}$=$\frac{{a}^{2}{b}^{2}}{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}$;
同理cos2β=$\frac{{a}^{2}{c}^{2}}{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}$,cos2γ=$\frac{{b}^{2}{c}^{2}}{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}$.
∴cos2α+cos2β+cos2γ=1,
所以要证:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$,只证$\frac{{a}^{2}+{b}^{2}+{c}^{2}}{\sqrt{{a}^{2}{b}^{2}+{a}^{2}{c}^{2}+{b}^{2}{c}^{2}}}≥\sqrt{3}$.只证${a}^{4}+{b}^{4}+{c}^{4}≥{a}^{2}{b}^{2}+\$a2c2+b2c2
又因为:a4+b4≥2a2b2,a4+c4≥2a2c2,c4+b4≥2c2b2,显然${a}^{4}+{b}^{4}+{c}^{4}≥{a}^{2}{b}^{2}+\$a2c2+b2c2,故原命题成立.

点评 本题考查了空间角,及证明不等式,转化思想是关键,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网