题目内容

8.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为p=2cosθ,θ∈[0,$\frac{π}{2}$].
(1)在直角坐标系下求曲线C的方程;
(2)设点D在曲线C上,曲线C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(1)中你得到的曲线C的方程,在直角坐标系下求D的坐标.

分析 (1)曲线C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].可得ρ2=2ρcosθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标方程;
(2)利用圆的方程:(x-1)2+y2=1(0≤y≤1).令$\left\{\begin{array}{l}{x-1=cos\frac{π}{3}}\\{y=sin\frac{π}{3}}\end{array}\right.$,即可得出直角坐标.

解答 解:(1)曲线C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].可得ρ2=2ρcosθ,化为直角坐标方程:x2+y2=2x,配方为:(x-1)2+y2=1(0≤y≤1).
(2)利用圆的方程:(x-1)2+y2=1(0≤y≤1).令$\left\{\begin{array}{l}{x-1=cos\frac{π}{3}}\\{y=sin\frac{π}{3}}\end{array}\right.$,可得D的直角坐标系为$(1+cos\frac{π}{3},sin\frac{π}{3}),即(\frac{3}{2},\frac{{\sqrt{3}}}{2})$.

点评 本题考查了极坐标方程化为直角坐标方程、圆的参数方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网