题目内容

如图,在半径为
3
,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.
(Ⅰ)将y表示成θ的函数关系式,并写出定义域;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+
π
12
,且a=
10
,cosB=
2
5
5
,D为AC中点,求BD的值.
考点:函数模型的选择与应用
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)在Rt△PON中,PN=OPsinθ=
3
sinθ
,ON=
3
cosθ.在Rt△OQM中,OM=
QM
tan60°
=sinθ.可得MN=0N-0M=
3
cosθ-sinθ
.可得矩形PNMQ的面积y=PN•NM=
3
sinθ(
3
cosθ-sinθ)
,再利用倍角公式、两角和差的正弦公式即可得出.
(Ⅱ)当2θ+
π
6
=
π
2
时,y取得最大值,θ=
π
6
.可得A=
π
4
.由cosB=
2
5
5
,可得sinB=
1-cos2B
.由正弦定理可得:b=
asinB
sinA
.利用两角和差的正弦公式可得sinC=sin(A+B)=sinAcosB+cosAsinB.由正弦定理可得:c=
asinC
sinA
.在△ABD中,由余弦定理可得:BD2=AB2+AD2-2AB•ADcosA.
解答: 解:(Ⅰ)在Rt△PON中,PN=OPsinθ=
3
sinθ
,ON=
3
cosθ.
在Rt△OQM中,OM=
QM
tan60°
=
PN
3
=sinθ.
∴MN=0N-0M=
3
cosθ-sinθ

∴矩形PNMQ的面积y=PN•NM=
3
sinθ(
3
cosθ-sinθ)
=3sinθcosθ-
3
sin2θ

=
3
2
sin2θ-
3
(1-cos2θ)
2

=
3
sin(2θ+
π
6
)
-
3
2
θ∈(0,
π
3
)


(Ⅱ)当2θ+
π
6
=
π
2
时,y取得最大值,θ=
π
6

∴A=
π
6
+
π
12
=
π
4

∵cosB=
2
5
5
,∴sinB=
1-cos2B
=
5
5

由正弦定理可得:
a
sinA
=
b
sinB

b=
asinB
sinA
=
10
×
5
5
2
2
=2.
sinC=sin(A+B)=sinAcosB+cosAsinB=
2
2
×
2
5
5
+
2
2
×
5
5
=
3
10
10

由正弦定理可得:
a
sinA
=
c
sinC

c=
asinC
sinA
=
10
×
3
10
10
2
2
=3
2

在△ABD中,由余弦定理可得:BD2=AB2+AD2-2AB•ADcosA
=(3
2
)2
+12-2×3
2
×1
×cos
π
4
=13.
∴BD=
13

D为AC中点,求BD的值.
点评:本题综合考查了直角三角形的边角关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理余弦定理,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网