题目内容

1.一袋中装有5个白球,3个红球,现从袋中往外取球,每次任取一个,取出后记下颜色,若为红色停止,若为白色则继续抽取,停止时袋中抽取的白球的个数为随机变量ξ,则$P(ξ≤\sqrt{6})$=(  )
A.$\frac{9}{14}$B.$\frac{25}{56}$C.$\frac{37}{56}$D.$\frac{23}{28}$

分析 ξ=k表示前k个为白球,第k+1个恰为红球,P(ξ≤$\sqrt{6}$)=P(ξ=0)+P(ξ=1)+P(ξ=2),由此能求出结果.

解答 解:ξ=k表示前k个为白球,第k+1个恰为红球,
P(ξ=0)=$\frac{{A}_{3}^{1}}{{A}_{8}^{1}}$=$\frac{3}{8}$,
P(ξ=1)=$\frac{{A}_{8}^{1}{A}_{3}^{1}}{{A}_{8}^{2}}$=$\frac{15}{56}$,
P(ξ=2)=$\frac{{A}_{8}^{2}{A}_{3}^{1}}{{A}_{8}^{3}}$=$\frac{10}{56}$,
P(ξ=3)=$\frac{{A}_{8}^{3}{A}_{3}^{1}}{{A}_{8}^{4}}$=$\frac{6}{56}$,
P(ξ=4)=$\frac{{A}_{8}^{4}{A}_{3}^{1}}{{A}_{8}^{5}}$=$\frac{3}{56}$,
P(ξ=5)=$\frac{{A}_{8}^{5}{A}_{3}^{1}}{{A}_{8}^{6}}$=$\frac{1}{56}$,
∴P(ξ≤$\sqrt{6}$)=P(ξ=0)+P(ξ=1)+P(ξ=2)
=$\frac{3}{8}+\frac{15}{56}+\frac{10}{56}$=$\frac{23}{28}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网