题目内容
若实数x,y满足件
,则2x+y的最小值是( )
|
| A、-1 | ||
B、-
| ||
| C、0 | ||
| D、2 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答:
试题分析:做出可行域,
解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最小,
此时z最小,
由
,解得
,
即A(-
,
),此时z=-
×2+
=-
,
故选:B
解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最小,
此时z最小,
由
|
|
即A(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故选:B
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
在△ABC中,已知△ABC的面积为S=a2-(b-c)2,则有( )
| A、sinA-4cosA=4 |
| B、sinA+4cosA=4 |
| C、cosA-4sinA=4 |
| D、cosA+4sinA=4 |
已知向量
=(3,2),
=(x,4),若
∥
,则x的值为( )
| a |
| b |
| a |
| b |
| A、4 | B、5 | C、6 | D、7 |
在数列{an}中,a1=14,3an=3an+1+2,则使anan+2<0成立的n值是( )
| A、21 | B、22 | C、23 | D、24 |